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Abstract. The aim of this addendum is to explain actions of multiplier operators
on Hardy spaces associated with Schrödinger operators with polynomial potentials. In
particular we show that boundedness of multiplier operators F (A) on atoms proved in
[5] imply existence of their continuous extensions on the Hardy space Hp

A.

1. Introduction

Let Tt(x, y) be the integral kernels a semigroup of linear operators {Tt}t>0 generated
by a Schrödinger operator −A = ∆ − V (x), where V (x) =

∑
β≤α aβx

β is a nonzero,
nonnegative polynomial potential on Rd.

Denote
ρ(x)−1 = m(x, V ) =

∑
β≤α
|DβV (x)|1/(β+2).

It is not difficult to check that there exists a constants κ > 1 and C > 0 such that

(1.1) C−1
(

1 +
|x− y|
ρ(x)

)−κ
≤ ρ(y)
ρ(x)

≤ C
(

1 +
|x− y|
ρ(x)

) κ
κ+1

.

Note that ρ(x) ∼ ρ(y) if |x − y| ≤ C ′ρ(x). Moreover, since V is a nonzero polynomial,
there is C such that ρ(y) ≤ C.

Fix 0 < p ≤ 1. Following [4] we say that a function a is a (1,∞)-atom for Hp
A, if there

exists a ball B = B(y0, r), r ≤ ρ(y0), such that

(1.2) supp a ⊂ B and ‖a‖L∞(Rd) ≤ |B|−1/p;

(1.3) if r ≤ ρ(y0)/4, then
∫
a(x)xγ dx = 0 for all β, |β| ≤ d(1/p− 1).

It follows from (1.1)-(1.3) that the atoms form a bounded set in the space of tempered
distributions S ′(Rd), that is, there are constants C and N such that

(1.4)
∣∣∣ ∫ a(y)ϕ(y) dx

∣∣∣ ≤ ‖ϕ‖(N),

where ‖ϕ‖(N) = max|γ|≤N{supx∈Rd |Dγϕ(x)|(1 + |x|)N} is a seminorm in the Schwartz
space S(Rd). Therefore, for any sequence an of atoms and any sequence of numbers
cn ∈ C such that

∑
|cn|p <∞, we define by means of the series

(1.5)
∞∑
n=1

cnan(y)

1
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a tempered distribution, by the formula:

(1.6) 〈
∞∑
n=1

cnan(y), ϕ〉 =
∞∑
n=1

cn

∫
an(y)ϕ(y) dx.

Furthermore,

(1.7)
∣∣〈 ∞∑
n=1

cnan(y), ϕ〉
∣∣ ≤ C ∞∑

n=1

|cn|‖ϕ‖(N) ≤ C
( ∞∑
n=1

|cn|p
)1/p
‖ϕ‖(N).

Let f ∈ L2(Rd). We say that f belongs to that Hp
A space associated with A if the

maximal function MAf(x) = supt>0 |Ttf(x)| belongs to Lp(Rd). Then we set

(1.8) ‖f‖Hp
A

= ‖MAf‖Lp .

It was proved in [4] that there is a constant C > 0 such that for any Hp
A-atom a one has

(1.9) ‖MAa‖Lp ≤ C.
Since the bottom of the spectrum of A is bigger than 0 (see e.g., [2]), for every t > 0
there exists a function et(λ) ∈ S0([0,∞)) such that

Tt =
∫ ∞

0
e−tλdEA(λ) =

∫ ∞
0

et(λ)dEA(λ),

where EA is the spectral decomposition of A. Recall that φ ∈ S0([0,∞)) if φ ∈ S([0,∞))
and dk

dλk
φ(0+) = 0 for k = 1, 2, ... (see [3, (3.3)]). Now Proposition 3.10 of [3] applied to

φ(λ) = et(λ) and µ = 0 gives that for every b > 0 and any muli-indexes γ, γ′ there is
Cb,γ,γ′ > 0 such that

(1.10) |Dγ
xD

γ′
y Tt(x, y)| ≤ Cb,γ,γ′(1 + |x− y|)−b.

Hence, for every t > 0 and x ∈ Rd, the function Rd 3 y 7→ Tt(x, y) belongs to the Schwartz
class S(Rd). By (1.9) the series (1.5) defines a tempered distribution f such that

MAf(x) = sup
t>0
|〈f, Tt(x, · )〉| ∈ Lp(dx)

and
‖MAf(x)‖pLp ≤ C

∑
n

|cn|p.

On the other hand the following theorem was actually proved in [4].

Theorem 1.11. There exists a constant C > 0 such that for any f ∈ L2 ∩Hp
A there is

a sequence of numbers cn and a sequence of atoms an(x) such that f =
∑

n cnan in the
sense of distributions, that is,∫

f(x)ϕ(x) dx = 〈
∞∑
n=1

cnan, ϕ〉 for ϕ ∈ S(Rd)

and
∞∑
n=1

|cn|p ≤ C‖MAf‖pLp = C‖f‖p
Hp
A
.

We may now define the spaces Hp
A as a completion of {f ∈ L2 :MAf(x) ∈ Lp(dx)} in

the quasinorm ‖ ‖Hp
A

.
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2. Action of multiplier operators on Hp
A

Assume that a multiplier F (λ), defined for λ > 0 satisfies the assumptions of Theorem
1.2 of [5], that is, for certain b > 0,

(2.1) sup
t>0
‖ψ( · )F (t · )‖C(d/2+b) = C0 <∞,

where ψ ∈ C∞c (0,∞) is a fixed auxiliary nonzero function. Since F (A) =
∫∞

0 F (λ) dEA(λ)
is a bounded operator on L2(Rd), F (A)a ∈ L2(Rd) for every atom a. It was actually
proved in [5] that for d/(d+ b) < p ≤ 1 there exists a constant C such that

(2.2) ‖F (A)a‖Hp
A
≤ CC0 for every atom a.

We are now in a position to clarify the action of multipliers on the space Hp
A.

Proposition 2.3. Let d/(d + b) < p ≤ 1. Assume that F satisfies (2.1). For f ∈
Hp
A ∩ L2(Rd), let f =

∑
j cja(x) be its atomic decomposition. Then for every ϕ ∈ S(Rd)

one has

(2.4)
∫

(F (A)f)(x)ϕ(x) dx =
∞∑
j=1

cj

∫
(F (A)aj)(x)ϕ(x) dx.

Proof. We first prove (2.4) for ϕ of the form ϕ = Tsφ with s > 0 and φ ∈ S(Rd). Let
ηn(x) = η(x/n), where η ∈ C∞c (Rd), η(x) = 1 for |x| < 1, 0 ≤ η ≤ 1.∫

(F (A)f)(x)ϕ(x) dx =
∫
f(x)(F̄ (A)Tsφ)(x) dx

=
∫
f(x)(TsF̄ (A)φ)(x) dx

= lim
n→∞

∫
f(x)ηn(x)(TsF̄ (A)φ)(x) dx

(2.5)

It follows from (1.10) that ηn(x)((TsF̄ (A)φ))(x) ∈ S(Rd). Hence,∫
(F (A)f)(x)ϕ(x) dx = lim

n→∞

∑
j

cj

∫
aj(x)ηn(x)(TsF̄ (A)φ)(x) dx

= lim
n→∞

∑
j

cj

∫
(TsF (A))(ajηn)(x)φ(x) dx.

(2.6)

It is not difficult to prove using the fact that ρ(x) ≤ C that multiplication by the functions
ηn are uniformly bounded operators on the Hardy space Hp

A and every function ajηn can
be written as a finite linear combination of atoms, that is,

ajηn =
mj,n∑
k=1

cj,k,naj,k,n and
mj,n∑
k=1

|cj,k,n|p ≤ C.

Note that the functions F (s)(λ) = e−sλF (λ) satisfy (2.1) with a constant C0 independent
of s > 0. Hence, using (1.4), Theorem 1.11, and (2.2) with F = F (s), we get that

(2.7)
∣∣∣ ∫ (TsF (A))(ajηn)(x)φ(x) dx

∣∣ ≤ C‖φ‖(N)
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with C independent of s, n, and j. Moreover, if n → ∞, then the integral in (2.7)
converges to ∫

(TsF (A)aj)(x)φ(x) dx =
∫

(F (A)aj)(x)ϕ(x) dx

and, consequently, we may change the order of limit and summation in (2.6) and obtain
(2.4) for ϕ = Tsφ.

Now we remove the assumption ϕ = Tsφ. Let ϕ ∈ S(Rd). Since f ∈ L2(Rd), F (A)f ∈
L2(Rd). Recall that Tt is a strongly continuous semigroup on L2(Rd). Thus,∫

(F (A)f)(x)ϕ(x) dx = lim
s→0

∫
(F (A)f)(x)Tsϕ(x) dx

= lim
s→0

∑
j

cj

∫
F (A)aj(x)Tsϕ(x) dx

= lim
s→0

∑
j

cj

∫
(TsF (A)aj)(x)ϕ(x) dx,

(2.8)

where in the second equality we have used already proved (2.4) for Tsϕ. Again, by the
same arguments we used in the first part of the proof, ‖TsF (A)aj‖Hp

A
≤ C independently

of s and j. Thus, ∣∣∣ ∫ (TsF (A)aj)(x)φ(x) dx
∣∣∣ ≤ C‖ϕ‖(N).

So we are allowed to change the order of limit and summation in (2.8) to get (2.4). �

Corollary 2.9. If f ∈ L2(Rd) ∩Hp
A and ϕ ∈ S(Rd), then∣∣∣∣∫ F (A)f(x)ϕ(x) dx

∣∣∣∣ ≤ CC0‖f‖Hp
A
‖ϕ‖(N),

‖F (A)f‖Hp
A
≤ CC0‖f‖Hp

A
.

Finally, one can deduce from Proposition 2.3 and Corollary 2.9 that F (A) has the
unique continuous extension on Hp

A and ‖F (A)f‖Hp
A
≤ CC0‖f‖Hp

A
.
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